Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37705188

ABSTRACT

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Subject(s)
Depressive Disorder, Major , Multiple Sclerosis , Animals , Rats , Fibroblast Growth Factor 1 , Fibroblast Growth Factor 2 , Fibroblast Growth Factor 9
2.
Neuropathol Appl Neurobiol ; 49(1): e12868, 2023 02.
Article in English | MEDLINE | ID: mdl-36520661

ABSTRACT

AIMS: The objective of the study is to explore the importance of tissue hypoxia in causing neurological deficits and demyelination in the inflamed CNS, and the value of inspiratory oxygen treatment, using both active and passive experimental autoimmune encephalomyelitis (EAE). METHODS: Normobaric oxygen treatment was administered to Dark Agouti rats with either active or passive EAE, compared with room air-treated, and naïve, controls. RESULTS: Severe neurological deficits in active EAE were significantly improved after just 1 h of breathing approximately 95% oxygen. The improvement was greater and more persistent when oxygen was applied either prophylactically (from immunisation for 23 days), or therapeutically from the onset of neurological deficits for 24, 48, or 72 h. Therapeutic oxygen for 72 h significantly reduced demyelination and the integrated stress response in oligodendrocytes at the peak of disease, and protected from oligodendrocyte loss, without evidence of increased oxidative damage. T-cell infiltration and cytokine expression in the spinal cord remained similar to that in untreated animals. The severe neurological deficit of animals with passive EAE occurred in conjunction with spinal hypoxia and was significantly reduced by oxygen treatment initiated before their onset. CONCLUSIONS: Severe neurological deficits in both active and passive EAE can be caused by hypoxia and reduced by oxygen treatment. Oxygen treatment also reduces demyelination in active EAE, despite the autoimmune origin of the disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Rats , Animals , Mice , Multiple Sclerosis/metabolism , Spinal Cord/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Oxygen/therapeutic use , Disease Models, Animal , Mice, Inbred C57BL
3.
Acta Neuropathol Commun ; 10(1): 12, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093166

ABSTRACT

One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood-brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/therapy , Interleukin-16/metabolism , Mesenchymal Stem Cell Transplantation/methods , Myelin Sheath/metabolism , Olfactory Mucosa/cytology , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Mice , Neurogenesis/physiology
4.
Ann Neurol ; 88(1): 123-136, 2020 07.
Article in English | MEDLINE | ID: mdl-32293054

ABSTRACT

OBJECTIVE: Treatment of relapses in multiple sclerosis (MS) has not advanced beyond steroid use, which reduces acute loss of function, but has little effect on residual disability. Acute loss of function in an MS model (experimental autoimmune encephalomyelitis [EAE]) is partly due to central nervous system (CNS) hypoxia, and function can promptly improve upon breathing oxygen. Here, we investigate the cause of the hypoxia and whether it is due to a deficit in oxygen supply arising from impaired vascular perfusion. We also explore whether the CNS-selective vasodilating agent, nimodipine, may provide a therapy to restore function, and protect from demyelination in 2 MS models. METHODS: A variety of methods have been used to measure basic cardiovascular physiology, spinal oxygenation, mitochondrial function, and tissue perfusion in EAE. RESULTS: We report that the tissue hypoxia in EAE is associated with a profound hypoperfusion of the inflamed spinal cord. Treatment with nimodipine restores spinal oxygenation and can rapidly improve function. Nimodipine therapy also reduces demyelination in both EAE and a model of the early MS lesion. INTERPRETATION: Loss of function in EAE, and demyelination in EAE, and the model of the early MS lesion, seem to be due, at least in part, to tissue hypoxia due to local spinal hypoperfusion. Therapy to improve blood flow not only protects neurological function but also reduces demyelination. We conclude that nimodipine could be repurposed to offer substantial clinical benefit in MS. ANN NEUROL 2020 ANN NEUROL 2020;88:123-136.


Subject(s)
Calcium Channel Blockers/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Nimodipine/therapeutic use , Spinal Cord/pathology , Animals , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Magnetic Resonance Imaging , Male , Myelin Sheath/pathology , Rats , Rats, Sprague-Dawley
5.
J Diabetes Res ; 2016: 6179635, 2016.
Article in English | MEDLINE | ID: mdl-26981544

ABSTRACT

BACKGROUND: Sulfatide is known to chaperone insulin crystallization within the pancreatic beta cell, but it is not known if this results from sulfatide being integrated inside the crystal structure or by binding the surface of the crystal. With this study, we aimed to characterize the molecular mechanisms underlying the integral role for sulfatide in stabilizing insulin crystals prior to exocytosis. METHODS: We cocrystallized human insulin in the presence of sulfatide and solved the structure by molecular replacement. RESULTS: The crystal structure of insulin crystallized in the presence of sulfatide does not reveal ordered occupancy representing sulfatide in the crystal lattice, suggesting that sulfatide does not permeate the crystal lattice but exerts its stabilizing effect by alternative interactions such as on the external surface of insulin crystals. CONCLUSIONS: Sulfatide is known to stabilize insulin crystals, and we demonstrate here that in beta cells sulfatide is likely coating insulin crystals. However, there is no evidence for sulfatide to be built into the crystal lattice.


Subject(s)
Insulin-Secreting Cells/chemistry , Insulin/chemistry , Sulfoglycosphingolipids/chemistry , Animals , Crystallization , Humans , Insulin-Secreting Cells/ultrastructure , Male , Microscopy, Electron , Models, Molecular , Protein Conformation , Protein Stability , Rats, Inbred Lew , Structure-Activity Relationship , Surface Properties
6.
PLoS One ; 11(1): e0147230, 2016.
Article in English | MEDLINE | ID: mdl-26784987

ABSTRACT

It has been reported that inhibition of RAD52 either by specific shRNA or a small peptide aptamer induced synthetic lethality in tumor cell lines carrying BRCA1 and BRCA2 inactivating mutations. Molecular docking was used to screen two chemical libraries: 1) 1,217 FDA approved drugs, and 2) 139,735 drug-like compounds to identify candidates for interacting with DNA binding domain of human RAD52. Thirty six lead candidate compounds were identified that were predicted to interfere with RAD52 -DNA binding. Further biological testing confirmed that 9 of 36 candidate compounds were able to inhibit the binding of RAD52 to single-stranded DNA in vitro. Based on molecular binding combined with functional assays, we propose a model in which the active compounds bind to a critical "hotspot" in RAD52 DNA binding domain 1. In addition, one of the 9 active compounds, adenosine 5'-monophosphate (A5MP), and also its mimic 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) 5' phosphate (ZMP) inhibited RAD52 activity in vivo and exerted synthetic lethality against BRCA1 and BRCA2-mutated carcinomas. These data suggest that active, inhibitory RAD52 binding compounds could be further refined for efficacy and safety to develop drugs inducing synthetic lethality in tumors displaying deficiencies in BRCA1/2-mediated homologous recombination.


Subject(s)
Breast Neoplasms/genetics , DNA, Single-Stranded/metabolism , Rad52 DNA Repair and Recombination Protein/chemistry , Rad52 DNA Repair and Recombination Protein/metabolism , Small Molecule Libraries/pharmacology , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Germ-Line Mutation/genetics , Humans , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Tumor Cells, Cultured
7.
Brain ; 138(Pt 7): 1875-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25907862

ABSTRACT

Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.


Subject(s)
Astrocytes/metabolism , Fibroblast Growth Factor 9/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Signal Transduction/physiology , Adult , Aged , Aged, 80 and over , Animals , Cells, Cultured , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunohistochemistry , In Situ Hybridization , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Microscopy, Fluorescence , Middle Aged , Oligonucleotide Array Sequence Analysis , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...